OpenStack API Extensions

An Overview

(Jun 10, 2011)

http://docs.openstack.org
http://docs.openstack.org

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions Jun 10, 2011

OpenStack API Extensions: An Overview
Copyright © 2010, 2011 Rackspace US, Inc. All rights reserved.

This document provides an overview of the OpenStack API extension mechanism.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions

Jun 10, 2011

List of Figures

2.1. Extensions and Pluggability

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions

Jun 10, 2011

List of Tables

2.1. Versions versus Extensions

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions Jun 10, 2011

1. Overview

Table of Contents

1.1, Intended AUIENCE ...t e e e e e e e e e e na e 1
1.2. Organization of this DOCUMENTcooiiiiiii i e e e e e e e eeeees 1
1.3. Document Change HiStOrYc.uuuuuiiiiii et 1

The OpenStack extension mechanism makes it possible to add functionality to OpenStack
APIs in a manner that ensures compatibility with existing clients. This capability allows
OpenStack operators and vendors to provide innovative functionality to their clients and
provides a means by which new features may be considered in upcoming versions of
OpenStack APIs.

This document describes the extension mechanism in detail. It provides guidance to API
implementors and clients on developing and consuming API extensions, it describes the
rules by which extensions are governed, and it describes the process used to promote API
extensions to new features.

1.1. Intended Audience

This document is intended for software developers who wish either to implement or
to consume an extendable OpenStack API. It assumes that the reader has a general
understanding of:

» ReSTful web services

« HTTP/1.1

* JSON and/or XML data serialization formats

* At least one OpenStack API: Compute, Object Storage, etc.

1.2. Organization of this Document

Chapter 2, Background
Provides background information on OpenStack extensions and the OpenStack
extension mechanism.

Describes the specifics of implementing and consuming extensions in ReST APIs.

Describes APl governance and the process by which extensions can be promoted to
new features in future revisions of an API.

Briefly summarizes the benefits of the extension mechanism and provides a brief
overview of how extensions are used.

1.3. Document Change History

Revision Date Summary of Changes

June 10, 2011 « |nitial draft.

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions Jun 10, 2011

2. Background

Table of Contents

2.1. What are EXTENSIONS?uuuuiiiiiiiiiiiiiiiiiiiitiiibibb ettt st e s ebe e enensbesenenennnenes 2
AP (=T EY o] a1 o 1T o T Lo 3 0 o1 o [H 3
2.3. EXteNSioNs @nd VEISIONSccooiiiiiiiieeee oo 4
2.4. VersioniNg EXTENSIONScciiuuuuiiiiiiieiiiiiae e e e e e ettt e e e e e e e eeeera e e e e e e eeeeeesna e aeaaeeeeennns 5
2.5. Extensions and Pluggabilityoooiiiiiiiiiiii e 5

This chapter provides background information on OpenStack extensions and the
OpenStack extension mechanism. It describes what extensions are, how the extension
mechanism in OpenStack is related to the OpenGL extension mechanism, the differences
between extensions and versions, the concept of versioning extensions, and why extensions
are vital when defining a pluggable architecture.

2.1. What are Extensions?

OpenStack APIs are defined strictly in two forms: a human-readable specification (usually

in the form of a developer's guide) and a machine-processable WADL. These specifications
define the core actions, capabilities, and media-types of the API. A client can always
depend on the availability of this core APl and implementers are always required to support
it in its entirety. Requiring strict adherence to the core API allows clients to rely upon a
minimal level of functionality when interacting with multiple implementations of the same
API.

Note that it is quite possible that distinct implementations of an OpenStack API exist.
First because API specifications are released under a free license, so anyone may use them
to implement a core API. Furthermore, the OpenStack implementations themselves are
released under a free license, making it possible to alter the code to create a specialized
version. Such a specialized implementation could remain OpenStack-compatible even if it
were to implement new features or add new capabilities, but only if it made the changes
in a manner that ensures that a client expecting a core APl would continue to function
normally — this is where extensions come in.

An extension adds capabilities to an APl beyond those defined in the core. The introduction
of new features, MIME types, actions, states, headers, parameters, and resources can all be
accomplished by means of extensions to the core API. In order for extensions to work, the
core APl must be written in such a manner that it allows for extensibility. Additionally, care
should be taken to ensure that extensions defined by different implementers don't clash
with one another, that clients can detect the presence of extensions via a standard method,
and that there is a clear promotion path at the end of which an extension may become
part of a future version of the core API. These actions, rules, and processes together form
the extension mechanism. It is important that core APIs adhere to this mechanism in order
to ensure compatibility as new extensions are defined. Note also that while a core APl may
be written to allow for extensibility, the extensions themselves are never part of the core.

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions Jun 10, 2011

2.2. Relationship to OpenGL

In the 1990s, OpenGL was developed as a portable open graphics library standard. The
goal was to provide a cross-platform library that could enable developers to produce

3D graphics at real time speeds (30-120 frames per second). There were several major
challenges to meeting this goal. In order to be considered an open standard, control
needed to shift from Silicon Graphics (SGI), who originally developed OpenGL, to an
independent Architecture Review Board (ARB) who would be responsible for approving
specification changes, marking new releases, and ensuring conformance testing.
Additionally, the graphics library itself would need to be designed in a manner that would
allow the establishment of a stable and portable platform for developers. Finally, the
library would need to garner the support of graphics hardware vendors as they would be
providing the hardware acceleration needed to meet the goal of performing at real-time
speeds.

Gaining vendor support is challenging because vendors are often in direct competition with
one another. They differentiate themselves by creating innovative new features and by
providing niche functionality to their users. Thus, OpenGL was faced with two competing
requirements. On the one hand, it needed to abstract away vendor differences in order

to provide a stable cross-platform environment to developers. On the other hand, in

order to garner vendor support, it needed a method by which vendors could differentiate
themselves and provide innovative new features and niche functionality to their users.

The OpenGL extension mechanism was developed to solve these problems. The extension
mechanism achieved balance between the two requirements by maintaining the core
specification under the direction of the Architecture Review Board while allowing vendors
to define extensions to the core OpenGL specification. The core specification remained
uncluttered and presented a unified view of common functionality. Because extensions
were detectable at run time, developers could write portable applications that could
adapt to the hardware on which they were running. This method of allowing for an
extensible APl has proven to be a very successful strategy. More than 500 extensions have
been defined in OpenGL's lifetime and many vendors, including NVidia, ATI, Apple, IBM,
and Intel, have participated in the process by developing their own custom extensions.
Additionally, many key innovations (such as vertex and fragment shaders) have been
developed via the extension process and are now part of the core OpenGL API.

OpenStack, while very different from OpenGL, shares many similar goals and faces many of
the same challenges. OpenStack APIs are designed to be open API standards. An important
goal is to provide developers with a ubiquitous, stable, any-scale cloud development
platform that abstracts away many of the differences between hosting providers and

their underlying infrastructure (hypervisors, load balancers, etc.). A Policy Review Board,
similar to OpenGL's Architecture Review Board, is responsible for directing development

of these APIs in a manner that ensures these goals are met. As with OpenGL, OpenStack
requires support from vendors (and cloud providers) in order to be successful. As a

result, OpenStack APIs also aim to provide vendors with a platform which allows them to
differentiate themselves by providing innovative new features and niche functionality to
their users. Because of these similarities, the OpenStack extension mechanism described

in this document is modeled after the OpenGL extension mechanism. The methods by
which extensions are defined vary drastically, of course, since the nature of the APIs is very
different (C versus ReST); however, the manner in which extensions are documented, the

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions Jun 10, 2011

way in which vendors are attributed, and the promotion path that an extension follows, all
borrow heavily from OpenGL.

2.3. Extensions and Versions

Extensions are always interpreted in relation to a version of the core API. In other words,
from a client's perspective, an extension modifies a particular version of the core APl in
some way. In reality, an extension may be applicable to several versions of an API at once.
For example, a particular extension may continue to be available as a core API moves from
one version to another. In fact, different implementations may decide to include support
for an extension at different versions. As explained in, when an extension is defined,

the minimal version of the core API that is required to run the extension is specified,;
implementers are free to support the extension in that version or in a later version of the
core. Note, however, that because the extension mechanism allows for promotion, an
extension in one version of a core APl may become a standard feature in a later version.

3 Note

As always, implementers are not required to support an extension unless it is
promoted to the core.

Because several versions of the core APl may be supported simultaneously, and because
each version may offer support for a different set of extensions, clients must be able

to detect what versions and extensions are available in a particular deployment. Thus,

both extensions and versions are queryable. Issuing a GET on the base URL (/) of the API
endpoint returns information about what versions are available. Similarly, issuing a GET

on the API's extensions resource (/ v1. 1/ ext ensi ons) returns information about what
extensions are available. (See for details of such requests.) Note that, since extensions
modify a particular version of the API, the ext ensi ons resource itself is always accessed at
a particular version.

Backward-compatible changes in an APl usually require a minor version bump. In an
extensible API, however, these changes can be brought in as extensions. The net effect is
that versions change infrequently and thus provide a stable platform on which to develop.
The Policy Review Board (PRB), with the help of project team leaders, is responsible for
ensuring that this stability is maintained by closely guarding core API versions. Extensions,
however, can be developed without the consent or approval of the PRB. They can be
developed in a completely decentralized manner both by individual OpenStack developers
and by commercial vendors. Because extensions can be promoted to standard features, the
development of new versions can be influenced significantly by individual developers and
the OpenStack client community and is therefore not strictly defined by the PRB. In other
words, new features of a core APl may be developed in a bottom-up fashion.

That said, not all extensions are destined to be promoted to the next APl version.
Core APIs always deals with core functionality — functionality that is supported by all
implementations and is applicable in common cases. Extensions that deal with niche
functionality should always remain extensions.

The table below summarizes the differences between versions and extensions.

OpenStack API Extensions

Jun 10, 2011

Table 2.1. Versions versus Extensions

Versions

Extensions

Rare. Versions provide a stable platform on which to
develop.

Frequent. Extensions bring new features to the market
quickly and in a compatible manner.

Centralized. Versions are maintained by the entity
that controls the API Spec: the OpenStack Policy Review
Board. Only the PRB can create a new version; only the
PRB defines what "OpenStack Compute 1.1" means.

Decentralized. Extensions are maintained by third
parties, including individual OpenStack developers and
software vendors. Anyone can create an extension.

Core. Versions support core functionality.

Niche. Extensions provide specialized functionality.

Queryable. Issuing a GET on the base URL (/) of the
APl endpoint returns information about what versions are
available.

Queryable. Issuing a GET on the API's extensions
resource (/ v1. 1/ ext ensi ons) returns information
about what extensions are available.

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

2.4. Versioning Extensions

There is no explicit versioning mechanism for extensions. Nonetheless, there may be
cases in which a developer decides to update an extension after the extension has been
released and client support for the extension has been established. In these cases, it is
recommended that a new extension be created. The extension may have a name that
signifies its relationship to the previous version. For example, a developer may append an
integer to the extension name to signify that one extension updates another: RAX- Pl E2
updates RAX- PI E.

Extensions may have dependencies on other extensions. For example, RAX- Pl E2

may depend on RAX- Pl E and may simply add additional capabilities to it. In general,
dependencies of this kind are discouraged and implementers should strive to keep
extensions independent. That said, extension dependencies allow for the possibility of
providing updates to existing extensions even if the original extension is under the control
of a different vendor. This is particularly useful in cases where an existing extension has
good client support.

2.5. Extensions and Pluggability

Core APIs abstract away vendor differences in order to provide a cross-platform
environment to their clients. For example, a client should be able to interact with an
OpenStack load balancing service without worrying about whether the deployment utilizes
Zeus, Pound, or HAProxy on the backend. OpenStack implementations strive to support
multiple backends out of the box. They do so by employing software drivers. Each driver is
responsible for communicating to a specific backend and is in charge of translating core API
requests to it.

The core API contains only those capabilities which are applicable to all backends; however,
not all backends are created equal, with each backend offering a distinct set of capabilities.
Extensions play a critical role in exposing these capabilities to clients. This is illustrated
below. Here, extensions fill in the gap between the common capabilities that the core API
provides and the unique capabilities of the Zeus load balancer. In a sense, one can think of
extensions as providing frontends to OpenStack plug-ins.

DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - DRAFT - [

OpenStack API Extensions

Jun 10, 2011

Figure 2.1. Extensions and Pluggability

Core | Extensions
L.BaaS

Zeus

Pound

HAProxy

	OpenStack API Extensions
	1. Overview
	1.1. Intended Audience
	1.2. Organization of this Document
	1.3. Document Change History

	2. Background
	2.1. What are Extensions?
	2.2. Relationship to OpenGL
	2.3. Extensions and Versions
	2.4. Versioning Extensions
	2.5. Extensions and Pluggability

